Irreversibility analysis of electromagnetic hybrid nanofluid for Cattaneo–Christov heat flux model using finite element approach

Author:

Qureshi Muhammad Amer

Abstract

AbstractTo get a better heat transmission capacity of ordinary fluids, new hybrid nanofluids (HNFs) with a considerably greater exponent heat than nanofluids (NFs) are being used. HNFs, which have a greater heat exponent than NFs, are being applied to increase the HT capacities of regular fluids. Two-element nanoparticles mixed in a base fluid make up HNFs. This research investigates the flow and HT features of HNF across a slick surface. As a result, the geometric model is explained by employing symmetry. The technique includes nanoparticles shape factor, Magnetohydrodynamics (MHD), porous media, Cattaneo–Christov, and thermal radiative heat flux effects. The governing equations are numerically solved by consuming a method known as the Galerkin finite element method (FEM). In this study, H2O-water was utilized as an ironic, viscous improper fluid, and HNF was investigated. Copper (Co) and Titanium Alloy (Ti6Al4V) nanoparticles are found in this fluid. The HT level of such a fluid (Ti6Al4V-Co/H2O) has steadily increased in comparison to ordinary Co-H2O NFs, which is a significant discovery from this work. The inclusion of nanoparticles aids in the stabilization of a nanofluid flowing and maintains the symmetry of the flow form. The thermal conductivity is highest in the boundary-lamina-shaped layer and lowest in sphere-shaped nanoparticles. A system's entropy increases by three characteristics: their ratio by fractional size, their radiated qualities, and their heat conductivity modifications. The primary applications of this examination are the biological and medical implementations like dental and orthopedic implantable devices, as well as other devices such as screws and plates because they possess a favorable set of characteristics such as good biomaterials, corrosion resistance and wear, and great mechanical characteristics.

Funder

DSR, KFUPM

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3