Mechanics of metallic nanoparticles inside lipid nanotubes: Suction and acceptance energies

Author:

Sadeghi F1,Ansari R1,Darvizeh M1

Affiliation:

1. Department of Mechanical Engineering, University of Guilan, Rasht, Iran

Abstract

Lipid nanotubes with well-designed cylindrical structures, tunable dimensions and biocompatible membrane surfaces have found potential applications such as templates to create diverse one-dimensional nanostructures and nanocarriers for drug or gene delivery. In this regard, knowing the encapsulation process is of crucial importance for such developments. The aim of this paper is to study the suction and acceptance phenomena of metallic nanoparticles, and in particular silver and gold, inside lipid nanotubes using the continuum approximation and the 6–12 Lennard-Jones potential function. The nanoparticle is modelled as a perfect sphere and the lipid nanotube is assumed to comprise six layers, namely two head groups, two intermediate layers and two tail groups. Analytical expressions are derived through undertaking surface and volume integrals to evaluate van der Waals potential energy and interaction force of a nanoparticle entering a semi-infinite lipid nanotube. These expressions are then employed to determine the suction and acceptance energies of system. To ascertain the accuracy of the proposed analytical expressions, the multiple integrals of van der Waals interactions are evaluated numerically based on the differential quadrature method. A comprehensive study is conducted to get an insight into the effects of different geometrical parameters including radius of nanoparticles, innermost radius of lipid nanotube, head group and tail group thicknesses on the nature of suction and acceptance energies and van der Waals interactions. Numerical results show that maximum suction energy increases by enlarging the nanoparticle size, while it decreases by increasing the head group thickness or the tail group thickness. It is further found that gold nanoparticle experiences higher maximum suction energies inside lipid nanotubes compared to silver nanoparticle.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic behavior of lysozyme enzyme inside titania nanotubes: a continuum approach;The European Physical Journal Plus;2022-10-26

2. Encapsulation of immobilized lysozyme enzyme inside various types of nanotubes: a continuum study;The European Physical Journal Plus;2022-07

3. Encapsulation of monocyclic carbon clusters into carbon nanotubes: A continuum modeling approach;Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems;2020-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3