Encapsulation of monocyclic carbon clusters into carbon nanotubes: A continuum modeling approach

Author:

Owais Cheriyacheruvakkara1,Kalathingal Mahroof1,Swathi Rotti Srinivasamurthy1ORCID

Affiliation:

1. School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram, India

Abstract

Carbon clusters are challenging to produce and isolate due to their highly reactive nature. One of the strategies for their isolation is to encapsulate the clusters into carbon nanotubes (CNTs) of appropriate radii. Herein, we have investigated the energetics for the encapsulation of the monocyclic carbon rings, [Formula: see text] ([Formula: see text], and [Formula: see text]) into CNTs of various radii using the continuum approximation. The encapsulation is driven by the non-covalent interactions between the carbon rings and the CNTs. The analyzes of the axial forces and the interaction energies at various orientations and positions of centers of mass of the rings with respect to the CNT axes clearly suggested the role of the tube radius in governing the energetics of encapsulation. Estimation of the acceptance and the suction energies as a function of CNT radius led to the prediction that the CNTs with radii of 5.38 Å, 5.83 Å, 6.25 Å, 6.68 Å, 7.07 Å, 7.51 Å, and 7.90 Å can efficiently encapsulate C10, C12, C14, C16, C18, C20, and C22 rings, respectively. In the limit of large tube radii, the numerical results lead to those obtained for carbon ring adsorption on graphene. Furthermore, the continuum approach enabled us to explore the potential energy surfaces thereby arriving at the equilibrium configurations of the rings inside the CNTs. Such an analysis is invaluable because of the enormous computational cost associated with quantum chemical calculations.

Funder

Science and Engineering Research Board

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3