Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects

Author:

Ghorbanpour Arani A12,Jamali M1,Ghorbanpour-Arani AH3,Kolahchi R1,Mosayyebi M1

Affiliation:

1. Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

2. Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Iran

3. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

The original formulation of the quasi-3D sinusoidal shear deformation plate theory (SSDPT) is here extended to the wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects. The sandwich structure contains a single layered graphene sheet as core integrated with zinc oxide layers as sensors and actuators. The single layered graphene sheet and zinc oxide layers are subjected, respectively, to 2D magnetic and 3D electric fields. Structural damping and surface effects are assumed using Kelvin–Voigt and Gurtin–Murdoch theories, respectively. The system is rested on an elastic medium which is simulated with a novel model namely as orthotropic visco-Pasternak foundation. An exact solution is applied in order to obtain the frequency, cut-off and escape frequencies. A displacement and velocity feedback control algorithm is applied for the active control of the frequency through a closed-loop control with bonded distributed zinc oxide sensors and actuators. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, magnetic field, viscoelastic foundation, surface stress, applied voltage, velocity feedback control gain and structural damping on the wave propagation behavior of nanostructure. Results depict that with increasing the structural damping coefficient, frequency significantly decreases.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3