Reliability prediction through guided tail modeling using support vector machines

Author:

Acar Erdem1

Affiliation:

1. Mechanical Engineering Department, TOBB University of Economics and Technology, Söğütözü, Ankara, Turkey

Abstract

Reliability prediction of highly safe mechanical systems can be performed using classical tail modeling. Classical tail modeling is based on performing a relatively small number of limit-state evaluations through a sampling scheme and then fitting a tail model to the tail part of the data. However, the limit-state calculations that do not belong to the tail part are discarded, so majority of limit-state evaluations are wasted. Guided tail modeling, proposed earlier by the author, can provide a remedy through guidance of the limit-state function calculations toward the tail region. In the original guided tail modeling, the guidance is achieved through a procedure based on threshold estimation using univariate dimension reduction and extended generalized lambda distribution and tail region approximation using univariate dimension reduction. This article proposes a new guided tail modeling technique that utilizes support vector machines. In the proposed method, named guided tail modeling with support vector machines (GTM-SVM), the threshold estimation is still performed using univariate dimension reduction and extended generalized lambda distribution, while the tail region approximation is based on support vector machines. The performance of guided tail modeling with support vector machines is tested with mathematical example problems as well as structural mechanics problems with varying number of variables. GTM-SVM is found to be more accurate than both guided tail modeling and classical tail modeling for low-dimensional problems. For high-dimensional problems, on the other hand, the original guided tail modeling is found to be more accurate than guided tail modeling with support vector machines, which is superior to classical tail modeling.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3