Scarce Sample-Based Reliability Estimation and Optimization Using Importance Sampling

Author:

Pannerselvam KiranORCID,Yadav Deepanshu,Ramu Palaniappan

Abstract

Importance sampling is a variance reduction technique that is used to improve the efficiency of Monte Carlo estimation. Importance sampling uses the trick of sampling from a distribution, which is located around the zone of interest of the primary distribution thereby reducing the number of realizations required for an estimate. In the context of reliability-based structural design, the limit state is usually separable and is of the form Capacity (C)–Response (R). The zone of interest for importance sampling is observed to be the region where these distributions overlap each other. However, often the distribution information of C and R themselves are not known, and one has only scarce realizations of them. In this work, we propose approximating the probability density function and the cumulative distribution function using kernel functions and employ these approximations to find the parameters of the importance sampling density (ISD) to eventually estimate the reliability. In the proposed approach, in addition to ISD parameters, the approximations also played a critical role in affecting the accuracy of the probability estimates. We assume an ISD which follows a normal distribution whose mean is defined by the most probable point (MPP) of failure, and the standard deviation is empirically chosen such that most of the importance sample realizations lie within the means of R and C. Since the probability estimate depends on the approximation, which in turn depends on the underlying samples, we use bootstrap to quantify the variation associated with the low failure probability estimate. The method is investigated with different tailed distributions of R and C. Based on the observations, a modified Hill estimator is utilized to address scenarios with heavy-tailed distributions where the distribution approximations perform poorly. The proposed approach is tested on benchmark reliability examples and along with surrogate modeling techniques is implemented on four reliability-based design optimization examples of which one is a multi-objective optimization problem.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3