Investigation of shear-induced platelet activation in ventricular assist device

Author:

Bounouib Mohamed1ORCID,Benakrach Hind1,Maazouzi Wajih2,Taha-Janan Mourad1

Affiliation:

1. Laboratory of Applied Mechanics and Technologies, ENSAM, Mohammed V University in Rabat, Rabat, Morocco

2. Industrial and Health Science and Technology Research Center (STIS), ENSAM, Mohammed V University in Rabat, Rabat-Institutes, Rabat, Morocco

Abstract

Due to the scarcity of organ donations, ventricular assist devices are the most accessible treatment for patients with advanced heart failure. Since their development, these devices have helped thousands of patients and could have helped even more had it not been for some of the complications they still experience. Among the most common complications are thrombosis and hemolysis. The purpose of this paper is to numerically investigate the effect of the blade angle and the blade count on the hydraulic properties of a newly designed ventricular assist device, as well as the potential for shear-induced platelet activation. The study was conducted on several models with different blade angles and blade counts using a variety of rotational speeds. Analysis of the obtained results showed a significant improvement in the pressure rise and the hydraulic efficiency in models with higher blade angle and lower blade count. In contrast, the other models showed slight improvement or deterioration of the hydraulic performance. In terms of shear-induced platelet activation, although the performance of all models was within an acceptable range, models with a higher blade angle and lower blade count had the lowest average platelet activation state.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of a centrifugal blood pump in terms of hemolysis index and hydraulic efficiency;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3