Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities

Author:

Zhan Bowen1,Jin Minghe1,Yang Guocai1ORCID,Huang Bincheng2

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

2. Key Laboratory of Cognition and Intelligence Technology, China Electronics Technology Group Corporation, Beijing, China

Abstract

Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.

Funder

Foundation for Innovative Research Groups of National Natural Science Foundation of China

Major Research Plan of the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive neural network control of manipulators with uncertain kinematics and dynamics;Engineering Applications of Artificial Intelligence;2024-07

2. Design and implementation of a 2-DOF 5R parallel mechanism with a coaxial-driven layout;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-02-03

3. Trajectory tracking control strategy of the gantry welding robot under the influence of uncertain factors;Measurement and Control;2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3