Affiliation:
1. College of Mechanical Engineering, Yangzhou University, Yangzhou, PR China
2. Department of Mechanical Engineering, University of Bristol, Bristol, UK
Abstract
It is essential to optimize the support structures in rotating machinery to reduce the vibration, (i.e. decreasing forces transmitted to the whole dynamic system). Lots of vibration alleviation methods were applied in rotary machines, such as squeeze film dampers were used in aero-engine. In this paper, a theoretical model of an active floating squeeze film damper was studied in a vibration control field. The change of fluid stiffness and damping was allowed in the design of active floating squeeze film damper. In this model, it is assumed that an active magnetic bearing and a squeeze film damper were used, and oil film forces and magnetic forces were obtained. A lumped mass model and a finite element model were established with an active floating squeeze film damper. Explicit Newmark- β was used to solve the responses of the lumped mass model and the combination of explicit Newmark- β and implicit Newmark- β were used to calculate the responses of the finite element rotor system. The simulation shows that vibration frequencies will be shifted by adjusting the proportional gain kp, but the uncertain phenomenon can be seen in the amplitude’s reductions by adjusting the derivative gain kd as the relative changing position of rotor’s node and force acting points of active magnetic bearing for different modes, and the nonlinear strength of floating ring squeeze film damper were different in the complex rotor system. It shows that active floating squeeze film dampers can suppress rotor’s vibration effectively by varying magnetic bearing parameters.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献