Continuum study on the mechanics of ion-based carbon nanocones as gigahertz oscillators

Author:

Sadeghi F12ORCID,Ansari R2ORCID

Affiliation:

1. Department of Mechanical Engineering, Ahrar Institute of Technology and Higher Education, Rasht, Iran

2. Department of Mechanical Engineering, University of Guilan, Rasht, Iran

Abstract

There is a growing interest in the development of nanomechanical oscillators operating in the gigahertz range and beyond. This paper introduces a novel nano-oscillator based on a chloride ion inside an open carbon nanocone decorated by functional groups at both small and wide ends. Assuming that the carbon atoms and the electric charges of functional groups are evenly distributed over the surface and the two ends of nanocone, respectively, a continuum-based model is presented through which potential energy and interaction force are evaluated analytically. The van der Waals interactions between ion and nanocone are modeled by the 6–12 Lennard–Jones potential, while the electrostatic interactions between ion and two functional groups are modeled by the Coulomb potential. With respect to the proposed formulations, potential energy and interaction force distribution are presented by varying sign and magnitude of functional groups charge and geometrical parameters (size of small and wide ends of nanocone and its vertex angle). Using the fourth-order Runge–Kutta numerical integration scheme, the equation of motion is also solved to arrive at the time histories of separation distance and velocity of ion. An extensive study is performed to investigate the effects of sign and magnitude of functional groups charge, geometrical parameters, and initial conditions (initial separation distance and initial velocity) on the oscillatory behavior of ion-electrically charged open carbon nanocone oscillator. Numerical results demonstrate that the oscillation frequency of chloride ion inside an uncharged nanocone is respectively lower and higher than those generated inside a nanocone whose small end is decorated by positively and negatively charged functional groups. It is further shown that oscillation frequency is highly affected by the sign of electric charges distributed at the small end of nanocone.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Encapsulation of monocyclic carbon clusters into carbon nanotubes: A continuum modeling approach;Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems;2020-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3