A review of electromechanical actuators for More/All Electric aircraft systems

Author:

Qiao Guan1ORCID,Liu Geng1,Shi Zhenghong2,Wang Yawen3,Ma Shangjun1,Lim Teik C3

Affiliation:

1. Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi’an, China

2. Department of Mechanical and Materials Engineering, Vibro-Acoustics and Sound Quality Research Laboratory, University of Cincinnati, Cincinnati, USA

3. University of Texas at Arlington, Arlington, USA

Abstract

Conventional hydraulic actuators in aircraft systems are high maintenance and more vulnerable to high temperatures and pressures. This usually leads to high operating costs and low efficiency. With the rapid development of More/All Electric technology, power-by-wire actuators are being broadly employed to improve the maintainability, reliability, and manoeuvrability of future aircraft. This paper reviews the published application and development of the airborne linear electromechanical actuator. First, the general configuration, merits, and limitations of the gear-drive electromechanical actuator and the direct-drive electromechanical actuator are analysed. Second, the development state of the electromechanical actuator testing systems is elaborated in three aspects, namely the performance testing based on room temperature, testing in a thermal vacuum environment, and iron bird. Common problems and tendencies of the testing systems are summarized. Key technologies and research challenges are revealed in terms of fault-tolerant motor, high-thrust mechanical transmission, multidisciplinary modelling, thermal management, and thermal analysis. Finally, the trend for future electromechanical actuators in More/All Electric Aircraft applications is summarized, and future research on the airborne linear electromechanical actuators is discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3