Affiliation:
1. Virginia Tech , Blacksburg, Virginia 24060, USA
Abstract
This Perspective article aims to emphasize the crucial role of uncertainty quantification (UQ) in understanding magnetic phase transitions, which are pivotal in various applications, especially in the transportation and energy sectors [D. C. Jiles, Acta Mater. 51, 5907–5939 (2003) and Gutfleisch et al., Adv. Mater. 23, 821–842 (2011)]. Magnetic materials undergoing phase transitions, particularly due to high temperatures, pose challenges related to the loss of their inherent properties. However, pinpointing a definitive phase transition temperature proves challenging due to the diverse and uncertain nanostructure of materials. Deterministic approaches are limited when seeking a precise threshold. As a result, there is a need to develop probabilistic methods to improve the understanding of this physical problem. In this study, UQ is explored within the context of magnetic phase transitions. In addition, the broader applications of UQ in relation to microstructures and Hamiltonian systems are discussed to highlight its significance in materials science. Furthermore, this study discusses the potential future work on the integration of quantum computing to achieve more efficient UQ solutions of magnetic phase transitions using Ising models.
Funder
Air Force Office of Scientific Research
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献