Cutting tool remaining useful life prediction based on robust empirical mode decomposition and Capsule-BiLSTM network
Author:
Affiliation:
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, PR China
2. Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, PR China
Abstract
Publisher
SAGE Publications
Subject
Mechanical Engineering
Link
http://journals.sagepub.com/doi/pdf/10.1177/09544062221142197
Reference38 articles.
1. Intelligent tool wear monitoring and multi-step prediction based on deep learning model
2. Review of tool condition monitoring methods in milling processes
3. Gaussian process regression model incorporated with tool wear mechanism
4. A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network
5. Tool wear condition monitoring based on wavelet transform and improved extreme learning machine
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A multi-scale spatial–temporal capsule network based on sequence encoding for bearing fault diagnosis;Complex & Intelligent Systems;2024-06-04
2. A comprehensive survey of machine remaining useful life prediction approaches based on pattern recognition: taxonomy and challenges;Measurement Science and Technology;2024-03-01
3. Bearing remaining useful life prediction with an improved CNN-LSTM network using an artificial gorilla troop optimization algorithm;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2024-01-17
4. Improved depth residual network based tool wear prediction for cavity milling process;The International Journal of Advanced Manufacturing Technology;2023-12-13
5. Toward practical tool wear prediction paradigm with optimized regressive Siamese neural network;Advanced Engineering Informatics;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3