Tool wear condition monitoring based on wavelet transform and improved extreme learning machine

Author:

Laddada Soufiane12ORCID,Si-Chaib Med. Ouali1,Benkedjouh Tarak3,Drai Redouane2

Affiliation:

1. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara Boumerdes, Algeria

2. Research Center in Industrial Technologies CRTI, Algiers, Algeria

3. EMP, Laboratoire Mécaniques des Structures (LMS), Algiers, Algeria

Abstract

In machining process, tool wear is an inevitable consequence which progresses rapidly leading to a catastrophic failure of the system and accidents. Moreover, machinery failure has become more costly and has undesirable consequences on the availability and the productivity. Consequently, developing a robust approach for monitoring tool wear condition is needed to get accurate product dimensions with high quality surface and reduced stopping time of machines. Prognostics and health management has become one of the most challenging aspects for monitoring the wear condition of cutting tools. This study focuses on the evaluation of the current health condition of cutting tools and the prediction of its remaining useful life. Indeed, the proposed method consists of the integration of complex continuous wavelet transform (CCWT) and improved extreme learning machine (IELM). In the proposed IELM, the hidden layer output matrix is given by inverting the Moore–Penrose generalized inverse. After the decomposition of the acoustic emission signals using CCWT, the nodes energy of coefficients have been taken as relevant features which are then used as inputs in IELM. The principal idea is that a non-linear regression in a feature space of high dimension is involved by the extreme learning machine to map the input data via a non-linear function for generating the degradation model. Then, the health indicator is obtained through the exploitation of the derived model which is in turn used to estimate the remaining useful life. The method was carried out on data of the real world collected during various cuts of a computer numerical controlled tool.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on tool remaining useful life prediction algorithm based on machine learning;Engineering Research Express;2024-07-11

2. Tool Wear State Identification Based on the IWOA-VMD Feature Selection Method;Machines;2024-03-12

3. Machine intelligence in mechanical engineering: an introduction;Machine Intelligence in Mechanical Engineering;2024

4. Bionic digital brain realizing the digital twin-cutting process;Robotics and Computer-Integrated Manufacturing;2023-12

5. CNC milling cutters condition monitoring based on empirical wavelet packet decomposition;The International Journal of Advanced Manufacturing Technology;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3