CFRP composite drilling through electrical discharge machining using aluminum as fixture plate

Author:

Pattanayak Suvranshu1ORCID,Sahoo Ananda Kumar1ORCID,Sahoo Susanta Kumar1

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha, India

Abstract

Recent developments in manufacturing require holes on composite materials, especially on the carbon fiber reinforced polymer (CFRP) with smooth hole periphery, low delamination, burr formation, taper, better circularity, and a high processing speed. Its non-conductive surface (epoxy layering) limits its machining through electrical discharge machining (EDM). To overcome this limitation, an aluminum fixture has been designed to guide the copper electrode of EDM for producing holes on a CFRP sheet of 1 mm thickness at low machining complexity, cost, time, delamination, burr in hole periphery and without affecting the material’s surface quality and performance. Even components with high geometrical complexity can also be drilled through this approach. Here, a multi-quality analysis called grey relational analysis is developed for examining the hole quality attributes, considering peak current, pulse on and off time, and flushing pressure as input parameters. This approach points out the optimum factor level setting and critical parameters (pulse-on time and peak current) that regulate the hole attributes (entrance and exit diameter, circularity, taper, material removal, and tool wear rate). An artificial neural network model has been designed and trained through experimental data sets. This model can also be adopted during the determination of hole quality attributes when the parameter settings are beyond a defined boundary, as the regression analysis value is very close to 1, and model performance is 4.99e-10. Peak current = 4 A, pulse-on time = 25 µs, pulse-off time=25 µs, and flushing pressure = 0.6 MPa were the optimum drilling parameters. In the initial hole, average burr length is 391.75 μm, and delamination of 539.3 μm is noticed. But burr formation is very negligible with delamination of 350.7 μm being observed with uniform circularity (0.979), low taper angle (−0.81354°), and TWR (0.000069 g/min) under optimum drilling conditions through this drilling approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3