Assessing wire EDM as a novel approach for CFRP drilling: performance and thermal analysis across lay-up configurations

Author:

Bajoria Aman,Alshaer Ahmad,Abdallah RamyORCID

Abstract

AbstractConventional drilling of carbon fibre–reinforced plastic (CFRP) presents significant challenges due to the material’s abrasive nature and anisotropic properties, leading to tool wear, delamination, and surface damage. To address these challenges, this study pioneers the use of wire electrical discharge machining (WEDM) to evaluate the drilling performance of thick CFRP lay-up configurations mainly unidirectional and multidirectional, marking the first application of WEDM for CFRP drilling. The study evaluates material removal rate (MRR), delamination factor (DF), and surface damage while employing an analytical solution to estimate surface temperature and heat conduction in the laminates. An eight-full factorial experimental design was employed, involving variations in ignition current (3 A and 5 A) and pulse-off time (4 µs and 8 µs). The findings revealed that the multidirectional lay-up achieved an MRR of 2.85 mm3/min, significantly outperforming the unidirectional lay-up’s MRR of 0.95 mm3/min, representing a 300% increase at 5 A and 4 µs. However, the increase in discharge energy led to surface damage such as delamination, frayed fibres, and irregular circularity, especially evident in the unidirectional lay-up. For delamination, the multidirectional lay-up had the highest top DF of 1.4 at 5 A and 6 µs, while the unidirectional lay-up achieved the peak bottom DF of 1.24 at the same levels. While none of the parameters significantly affected the responses, the current exhibited the highest contribution ratios. Analytical predictions of the thermal distribution indicated a 45-µm delamination length at the laminate surface and depth, aligning closely with experimental predictions of 30–50 µm.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3