Mobility and singularity analyses of a symmetric multi-loop mechanism for space applications

Author:

Li Chuanyang1ORCID,Angeles Jorge2ORCID,Guo Hongwei1ORCID,Yan Huiyin1,Tang Dewei1,Liu Rongqiang1,Deng Zongquan1

Affiliation:

1. State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China

2. Department of Mechanical Engineering and Centre for Intelligent Machines, McGill University, Montreal, Canada

Abstract

A symmetric, double-tripod multi-loop mechanism (DTMLM), for aerospace applications, is the subject of this paper. Its mobility and singularity are analyzed, while introducing a novel tool, the cell-division method for singularity analysis, applicable to multi-loop mechanisms. The key principle of this method lies in replacing the singularity analysis of the original multi-loop mechanism with: (1) that of an equivalent simpler parallel mechanism; (2) the constraint analysis between loops; and (3) the singularity analysis of simpler kinematic subchains. Then, the mechanism is transformed into a simpler, equivalent parallel mechanism with three identical kinematic subchains. Its mobility and singularity are analyzed based on screw algebra, which leads to a key conclusion about the geometric properties of this mechanism. Results show that: (a) the DTMLM has three degrees of freedom (dof), i.e., two rotational dof around two intersecting axes lying in the middle plane of the mechanism, and one translational dof along the normal to the said plane (2R1T); and (b) the singularities of the 3-RSR parallel mechanism are avoided in the DTMLM by means of prismatic joints, singularities in the DTMLM occurring on the boundary of its workspace. Thus, the DTMLM has a 2R1T mobility everywhere within its workspace. When a set of multi-loop mechanisms of this kind are stacked as modules to assemble a multi-stage manipulator for space applications, the modules can be designed so that, under paradigm operations, all individual loops operate within their workspace, safe from singularities.

Funder

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

The Foreign Short-term Visiting Program for Doctoral Students at HIT

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference60 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3