Use of 1D mechanical and thermal models to predetermine the heat transferable by a thermal interface material layer in space applications

Author:

Vandevelde Simon12ORCID,Daidié Alain2ORCID,Sartor Marc2

Affiliation:

1. CNES (French Space Agency), Toulouse, France

2. Institut Clément Ader, Université de Toulouse, UMR CNRS, INSA/UPS/ISAE/Mines Albi 3 rue Caroline Aigle, Toulouse, France

Abstract

This paper proposes the use of 1D basic models to build a design assistance tool capable of evaluating the heat transfer between a third-level electronic packaging and its support, considering a conventional configuration where a thermal interface material is placed between these two parts. Using this kind of tool early in the design process may facilitate choices concerning geometry and material. The packaging is modelled by a stepped beam (the equipment) and the interface layer by a nonlinear elastic foundation (the thermal interface material). Considering that the electronic equipment bends under the effect of the forces exerted by the fasteners, the tool makes it possible to determine the contact zone remaining operative after deformation, and the pressure distribution at the interface. Mechanical results are then used to calculate the steady-state heat transfer between the equipment and its support, taking into account the diffusion within the equipment and the thermal interface material, and also the thermal contact resistances, the latter being dependent on the contact pressure. A detailed case study is used to illustrate the utility of the approach. The 1D models are exploited to illustrate the interest of the design assistance tool. The influence of different parameters on the thermal performance is studied and a new innovative proposal is analyzed, which could lead to a significant increase in thermal performance.

Funder

Thales Group

Centre National d'Etudes Spatiales

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3