Self-synchronization theory of tri-motor excitation with double-frequency in far resonance system

Author:

Zou Min1,Fang Pan12ORCID,Hou Yongjun12,Chai Guodong1,Chen Jinsong1

Affiliation:

1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China

2. Key Laboratory of Oil &Gas Equipment, Ministry of Education, Southwest Petroleum University, Chengdu, China

Abstract

With the rapid development of petroleum exploitation industry, vibrating screen actuated with a single frequency is unsuitable to separate cuttings from drilling fluid, since it usually results in screen blocking. Hence, for solving the above-mentioned problem, tri-motor excitation with double-frequency in far resonance system is introduced. This paper aims to explore the self-synchronization mechanism of the proposed system. First, dynamic equation is established according to physical model of the system. Then, displacement response of the system in steady state is obtained with dynamic formulas. Subsequently, synchronous condition among the three exciters is determined by small parameters method, and criterion of synchronous stability among the three exciters is derived by Poincare-Lyapunov method. Finally, in light of the differential motion equation, Runge-Kutta principle is assigned to validate the reliability of self-synchronous theory and the stability of the double-frequency system. The results indicate that electromagnetic torques of low-frequency motors are dynamically antisymmetric in synchronous operation, and synchronous ability of the system is determined by the mass ratio among the rotors. In addition, stable phase difference among the rotors is significantly influenced by the structural parameters of the system. And this study will be helpful for the improvement of separation technology.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3