Synchronization characteristics of a rotor-pendula system in multiple coupling resonant systems

Author:

Fang Pan1,Hou Yongjun1

Affiliation:

1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China

Abstract

The problem is motivated by observations of a rotor-pendula system, which derived from a new shale shaker. To grasp the dynamic characteristics of the shale shaker, the key research is exploring the synchronous mechanism for the system, since synchronous state between rotors is closely related to the dynamic characteristics of the system. In this paper, the dynamic equation of the rotor-pendula system is firstly derived by applying Lagrange’s equations. Through Laplace’s transformation method, the approximate responses of the system in synchronous state are obtained, which is determined coupling coefficients and synchronous state of the system. Then, the synchronous balance equation and the stability criterion of the system are obtained with Poincaré method on which stable phase difference and synchronous behavior can be ascertained. To verify the correctness of the theoretical analysis, numerical simulations are implemented by Runge–Kutta method, and it is shown that the synchronous behavior is determined by the geometry parameters, coupling coefficients, and rotor rotation direction.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultimate bearing capacity analysis and structural optimization of packer slip;Engineering Failure Analysis;2024-06

2. Dynamic theory and experimental testing in ipsilateral offset dual-motor excitation system;Transactions of the Canadian Society for Mechanical Engineering;2024-06-01

3. Synchronization of the vibration system excited by four eccentric rotors with parallel and coplanar rotational axis;Journal of Mechanical Science and Technology;2024-06

4. Synchronization of tri-exciter system with two elastic coupling coaxial exciters in far-resonance system;Journal of Mechanical Science and Technology;2024-05

5. Synchronization characteristics of two induction motors on a floating raft system;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3