Modeling and characterization of mechanical and energetic elastoplastic behavior of lattice structures for aircrafts anti-icing systems

Author:

Pasquale Giorgio De1ORCID,Tagliaferri Alberto1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

Abstract

The design of lattice structures for additive manufacturing processes requires dedicated methods and tools able to reduce the computational heaviness of simulation and to predict accurately the global strength and strain energy dissipation and the stress distribution. Additionally, geometrical-related stress intensifications lead to local yielding regions and related plastic hinges which contribute to the deformation mechanisms. The use of cellular materials in heavy loaded structures has important role in lightered and hybrid components for aircrafts. In this paper, lattice structures are used as impact absorbers in aircrafts anti-icing systems to efficiently dissipate the kinetic energy. Some variants of lattice structures are analyzed by numerical simulations and experimental characterizations in the elastoplastic regime with the goal to correlate the equivalent material density, the structural strength, and the strain energy dissipation to cells shapes and dimensions.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3