Strain-based method for fatigue failure prediction of additively manufactured lattice structures

Author:

Coluccia Antonio,De Pasquale Giorgio

Abstract

AbstractLattice structures find application in numerous technological domains, including aerospace and automotive industries for structural components, biomedical sector implants, and heat exchangers. In many instances, especially those pertaining to structural applications, fatigue resistance stands as a critical and stringent requirement. The objective of this paper is to advance the analysis of fatigue failure in additively manufactured lattice structures by introducing a predictive fatigue failure model based on the finite element (FE) method and experimentally validating the results. The model utilizes linear homogenization to reduce computational effort in FE simulations. By employing a strain-based parameter, the most critical lattice cell is identified, enabling the prediction of fatigue crack nucleation locations. The Crossland multiaxial fatigue failure criterion is employed to assess the equivalent stress, furnishing the fatigue limit threshold essential for predicting component failure. Inconel 625 specimens are manufactured via the laser-based powder bed fusion of metals additive manufacturing process. In order to validate the model, cantilevers comprising octa-truss lattice cells in both uniform and graded configurations undergo experimental testing subjected to bending loads within the high cycle fatigue regime. The proposed methodology effectively forecasts the location of failure in seventeen out of eighteen samples, establishing itself as a valuable tool for lattice fatigue analysis. Failure consistently manifests in sections of uniform and graded lattice structures characterized by the maximum strain tensor norm. The estimated maximum force required to prevent fatigue failure in the samples is 20 N, based on the computed Crossland equivalent stress.

Funder

European Commission

uropean Commission - Horizon Europe

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3