Simulation research on distribution method of axial piston pump utilizing pressure equalization mechanism

Author:

Xu Bing1,Zhang Junhui1,Yang Huayong1

Affiliation:

1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, China

Abstract

Noise reduction in axial piston pumps has been attempted by many researchers with different design approaches and techniques. However, most traditional structures on valve plate for noise reduction are at the cost of efficiency to different extent. In this article, a new distribution method with pressure equalization mechanism composed of check valve and pressure recuperation chamber is discussed. A simulation model for the analysis of noise excitation sources is developed, and is verified by comparison of flow ripple between simulation and experiment. The working principle of pressure equalization mechanism is analyzed in detail. Compared with reference commercial axial piston pump, the simulation results indicate that the flow ripple and the torque pulsation are sharply reduced with the pressure equalization mechanism. Moreover, the volumetric efficiency of axial piston pump is also improved. The power of variable-displacement control mechanism will be reduced and the control accuracy can be improved easily due to the swash-plate torque reduction. The analysis shows that the check-valve frequency and the pressure recuperation chamber volume are vital for the pressure equalization mechanism. The optimal pressure recuperation chamber volume is about three times the size of the minimum piston chamber dead volume. The optimal maximum displacement of check valve is about 1 mm. The pressure equalization mechanism is promising in the design of high-performance axial piston pump with low noise emission.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3