An enhanced stochastic resonance method for weak feature extraction from vibration signals in bearing fault detection

Author:

Lei Yaguo12,Lin Jing1,Han Dong1,He Zhengjia1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, China

2. State Key Laboratory of Mechanical Transmission, Chongqing University, China

Abstract

Rolling element bearings are widely used in modern machinery and play an important role in industrial applications. Tough environments under which they work make them subject to failure. The classical strategy is to collect bearing vibration signals and denoise the signals to detect fault features by using signal processing techniques. Although the noise is reduced with this strategy, the fault features may be weakened or even destroyed as well. Different from the classical denoising techniques, stochastic resonance is able to extract weak features embedded in heavy noise by utilizing noise instead of eliminating noise. The single stochastic resonance, however, fails to extract the fault features when the signal-to-noise ratio of the bearing vibration signals is very low. To address this problem, this paper investigates the enhancement methods of stochastic resonance and develops a cascaded stochastic resonance-based weak feature extraction method for bearing fault detection. Two sets of vibration signals collected respectively from an experimental bearing and a bearing inside a train wheel pair are utilized to demonstrate the proposed method. The results show that the method is superior to the other enhancement methods in extracting weak features of bearing faults.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3