A fast and adaptive varying-scale morphological analysis method for rolling element bearing fault diagnosis

Author:

Shen Changqing12,He Qingbo2,Kong Fanrang2,Tse Peter W1

Affiliation:

1. Department of Systems Engineering and Engineering Management, City University of Hong Kong and USTC-CityU Joint Advanced Research Centre, Suzhou, P. R. China

2. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China and USTC-CityU Joint Advanced Research Centre, Suzhou, P. R. China

Abstract

The research in fault diagnosis for rolling element bearings has been attracting great interest in recent years. This is because bearings are frequently failed and the consequence could cause unexpected breakdown of machines. When a fault is occurring in a bearing, periodic impulses can be revealed in its generated vibration frequency spectrum. Different types of bearing faults will lead to impulses appearing at different periodic intervals. In order to extract the periodic impulses effectively, numerous techniques have been developed to reveal bearing fault characteristic frequencies. In this study, an adaptive varying-scale morphological analysis in time domain is proposed. This analysis can be applied to one-dimensional signal by defining different lengths of the structure elements based on the local peaks of the impulses. The analysis has been first validated by simulated impulses, and then by real bearing vibration signals embedded with faulty impulses caused by an inner race defect and an outer race defect. The results indicate that by using the proposed adaptive varying-scale morphological analysis, the cause of bearing defect could be accurately identified even the faulty impulses were partially covered by noise. Moreover, compared to other existing methods, the analysis can be functioned as an efficient faulty features extractor and performed in a very fast manner.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3