Multi-objective optimization design for a hydrodynamic retarder based on CFD simulation considering cavitation effect

Author:

Yang Konghua1,Liu Chunbao1ORCID,Wu Qingtao2,Li Xuesong2

Affiliation:

1. School of Mechanical Science and Aerospace Engineering, Jilin University, Changchun, China

2. State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun, China

Abstract

It is important to suppress cavitation phenomenon for lower vibration and noise, which can be realized by structure optimization to reduce cavitation bubbles of flow field. Nonetheless, performance factors in hydrodynamic retarder are usually conflicted when conducting a structure design, it is hard to simultaneously restrain cavitation and improve the retarding performance. In our study, a combination of comprehensive CFD simulation and multi-objective optimization is developed to improve the retarding torque ([Formula: see text]), lessen the volume of Retarder ([Formula: see text]) and reduce the volume of bubbles ([Formula: see text]) in the internal flow field. First, the elaborate CFD simulation calculation, included a refined hexahedral mesh and the stress-blended eddy simulation (SBES), is proposed to investigate the unsteady flow field considering the cavitation, and its accuracy is validated by experimental data. Then, the RSM (Respond Surface Method) approximation model is constructed by combination of DOE (Design of Method) and CFD methods. The NSGA-II (Non-Dominated Sorting Genetic Algorithm) is selected as multi-objective optimization algorithm, and the weight and scale factor of each sub objective are specified. The optimization results, verified by theoretical calculation, show that [Formula: see text] is increased by 22%–24%, [Formula: see text] is reduced by 32%–45% and [Formula: see text] is reduced by 1%. Furthermore, the comparison of the vortex distributions before and after optimization demonstrates that the optimization improves the flow field impact and pressure loss in the retarder and reduces the number of bubbles resulting in the increasing vortex. Additionally, parameters’ effect on the cavitation and the braking performance are analyzed to efficiently achieve the best comprehensive performance of the retarder design. The newly-developed optimization method, which can understand the optimization principle and guide a balance between the cavitation and the retarding performance improvement, will reduce huge trial cost and time cost in the manufacture.

Funder

Key Scientific and Technological Projects of Jilin Provinc

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3