Effect of different ceramic fillers filled with GF/PTFE on the tensile and compressive properties of the composites

Author:

Yang Guang-hui1,Ji Xin1ORCID

Affiliation:

1. College of Mathematical, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, China

Abstract

In this article, six ceramic-filled glass fiber (GF)/PTFE-based composites were fabricated using 15 wt.% mass fraction GF and 80 wt.% PTFE as matrix materials and 5 wt.% mass fraction ceramic materials such as Al2O3, MoS2, TiO2, BaSO4, hollow glass beads (HGB), and solid glass beads (SGB) as filler materials, respectively, at 44 MPa molding pressure and sintering temperature of 370°C. The tensile strength, elongation at break, and compressive strength at room temperature and 250°C were investigated for six composites. Finally, the surface morphology of the composites was characterized using the ultradeep field electron microscope. The results show that MoS2 has the best synergistic strengthening effect with GF in PTFE matrix, but the toughening effect is less obvious, so MoS2/GF/PTFE exhibits the maximum hardness (66) and tensile strength (18.16 MPa) and the minimum elongation at break (94.72%), while HGB/GF/PTFE composites exhibit the minimum hardness (61) and tensile strength (15.04 MPa) and the maximum elongation at break (360.36%). In addition, the MoS2/GF/PTFE exhibited the maximum compressive strength (9.29 MPa) at 250°C, but then the SGB/GF/PTFE composite exhibited the maximum compressive strength (24.28) at room temperature. A comprehensive analysis of the modification mechanism shows that the type, morphology, particle size, strength, and interfacial bonding with the PTFE matrix of the ceramic filler all influence the filling effect of the composite.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3