Experimental and numerical investigations on the acoustic characteristics and unsteady behaviors of a centrifugal compressor for fuel cell vehicles

Author:

Chen Siyue1ORCID,Zuo Shuguang1,Wei Kaijun1

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai, People’s Republic of China

Abstract

Compared to other air compressors, high-speed centrifugal compressors are considered a more suitable choice for a mid-to-high-power fuel cell system due to its high-pressure ratio. As the centrifugal compressor is the most intensive noise source in the fuel cell vehicle, its acoustic characteristics become a major concern in the passenger comfort experience. Unlike the turbocharger compressor, the centrifugal compressor in a fuel cell vehicle tends to operate at near-surge conditions, which leads to flow instabilities and increases the noise level. In this paper, the acoustic characteristics of a centrifugal compressor for a fuel cell vehicle were measured on a compressor test rig covering the full range of the compressor map. The experimental results show that the lowest sound pressure level at the compressor inlet occurs in the design operating area, while the highest level occurs near the mild-surge line. Experimental work was complemented by numerical simulations. Time-averaged flow fields were compared between the near-choke and mild-surge conditions and the detached eddy simulations (DES) were performed at mild-surge conditions. Sparsity-promoting dynamic mode decomposition (SPDMD) was employed as a post-processing method to extract the flow structures associated with corresponding noise features. It was observed that the rotating stall of the impeller inducer is the main cause of the narrow-band whoosh noise near the mild-surge line. The location, number, and speed of the stall cells were identified by SPDMD in rotational and stationary frames.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3