Numerical Study on Vortical Flow Structure and Performance Enhancement of Centrifugal Compressor Impeller

Author:

Hong Seongbin,Mugabi JophousORCID,Jeong Jae-Ho

Abstract

The performance and efficiency of a centrifugal compressor are usually affected by the highly complex 3-dimensional flow structures which develop in the flow field of the compressor. Several experiments and research using numerical analysis have been reported, however, there are still many unknown physical phenomena that need to be studied, in order to optimize the design and improve the efficiency of turbomachines, especially those installed on hydrogen-powered fuel cell electric vehicles (FCEVs). In this study, the 3-dimensional vortex structures were analyzed using the critical-point theory and the probabilistic definitions, for an air supply device mounted on the commercial hydrogen FCEVs. The behavior of the complex 3-dimensional vortex structures at the design flow rate and low flow rate were elucidated. A tip leakage vortex was observed to develop at the leading edge of the main blade at all flow rates, which caused interference to the splitter blade. At 60% of the design flow rate, a vortex breakdown occurred at the tip leakage vortex near the leading edge of the main blade, and a reverse flow at 50% chord length of the main blade’s suction surface. The boundary layer which developed at the leading edge of the main blade’s suction surface at all flow rates led to the creation of a hub separation vortex by interfering with the boundary layer developed at the hub surface as a result of the centrifugal force. In addition, the boundary layer developed at the hub and shroud surface created a horseshoe vortex as it moved downstream and interfered with the leading edge of the main blade and splitter blade. It was confirmed that the behavior of the tip leakage, hub separation, and horseshoe vortex structures determined the aerodynamic performance of the centrifugal compressor. The average pressure difference improved by 1.47% of the entire flow rate after optimizing the compressor design.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3