Pattern recognition of rolling bearing fault under multiple conditions based on ensemble empirical mode decomposition and singular value decomposition

Author:

Tong Shuiguang1,Zhang Yidong1,Xu Jian1,Cong Feiyun1

Affiliation:

1. The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, PR China

Abstract

In rotating machinery, the malfunctions of rolling bearings are one of the most common faults. To prevent machine breakdown, the pattern recognition of rolling bearing faults has been a pivotal issue for fault identification and classification. This study proposes a new feature extraction method based on ensemble empirical mode decomposition (EEMD) and singular value decomposition (SVD) for fault classification. The proposed E–S method (EEMD combined with SVD using feature parameters) intends to enhance the faults identification capability in different working conditions, including various fault types (FT), fault severities (FS), and fault loads (FL). In this study, the E–S method is adopted to analyze the simulated signals. And the experiment further discusses three cases of different FT, FS, and FL separately under six different classifiers. The experimental results show that different fault classes can be effectively distinguished by the proposed E–S in comparison with other traditional feature extraction methods. Hence, the proposed method is verified to have an effective and excellent performance in bearing fault classification.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3