Design and simulation of polymethyl methacrylate-titanium composite bone fixing plates using finite element analysis: Optimizing the composition to minimize the stress shielding effect

Author:

Naidubabu Y1,Mohana Rao G1,Rajasekhar K1,Ratna Sunil B1

Affiliation:

1. Department of Mechanical Engineering, Rajiv Gandhi University of Knowledge Technologies (AP-IIIT), Nuzvid, India

Abstract

Stress shielding is a mechanical phenomenon usually found in load-bearing bone implants. Difference in mechanical properties between the natural bone and the artificial implant leads to stress shielding problem. In the present work, polymethyl methacrylate and commercial pure titanium were selected to design laminate and particulate composites. Optimum composition was theoretically obtained that exhibits mechanical properties close to that of natural human bone. Bone fixing plate was designed for femur bone using computer-aided design. Finite element analysis was adopted to analyze the stress distribution in the bone and implant under static load conditions. Fixing plate with three screws was modeled and simulated using finite element analysis to investigate the stress distribution. Simulation was also done considering 316 L stainless steel as fixing implant and compared with the present optimized composition. Laminate composite with 0.3 volume fraction of titanium has shown mechanical properties close to the bone compared with other combinations. The results have clearly shown that the von-Mises stress induced in the bone with polymethyl methacrylate-titanium laminate composite plates was increased compared with the bone implanted with 316 L steel. Interestingly, laminate composites exhibited higher stresses in the bone compared with particulate composites. From the present design and simulation, it is clearly demonstrated that the laminate composites of polymethyl methacrylate–30% titanium can be an optimum choice for load-bearing implant materials with reduced stress shielding effect.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3