A novel nonlocal higher-order theory for the accurate vibration analysis of 2D FG nanoplates

Author:

Xie Juanjuan1,Li Jin1,Zhen Longxin2,Zhang Chengguang1,Mohammadi Reza3

Affiliation:

1. College of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, China

2. College of Vehicle and Energy, Yanshan University, Qinhuangdao, China

3. Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

In this paper, vibration analysis of the 2 D-FG nanoplate is studied based on a novel higher-order shear deformation theory (HSDT). The proposed HSDT is a composition of trigonometric, exponential and polynomial functions which is one of the most accurate HSDTs. The mechanical properties of the nanoplate change along with the length and thickness directions, according to arbitrary functions. To model the displacement field, the impacts of both transverse shear and thickness stretching are considered. To consider the small-scale impact, nonlocal elasticity theory is applied. To obtain the equations of motion, Hamilton’s principle is applied. Navier method is used for a closed-form solution of the 2 D-FG nanoplates with simply-supported boundary conditions. The impact of different parameters including the small-scale parameter are studied on the natural frequency of the system. The results illustrate that when size effect parameter is smaller/greater than 0.5 nm, the impacts of the FG parameters on the frequency of the system increase/reduce.

Funder

National Natural Science Foundation of China Youth Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3