Affiliation:
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, China
2. Robotics Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, China
Abstract
Planar parallel robots are appealing due to their structural simplicity, high stiffness, and large payload capacity. One major problem is that workspace and singularity of non-redundant parallel robots are unchangeable. Hence, when the desired path crossed with singularity or exceeded the workspace’s boundary, the robot is incapable of finishing the task. Another one is closeness to singularity. If one can know the distance between the end manipulator and singularity or workspace’s boundary, the robot will avoid lose control or breakdown. Compared with the traditional planar parallel robot, the planar parallel robot with kinematic redundancy possesses the advantages of avoiding singularity, expanding workspace by adjusting kinematic redundancy parameter. Therefore, the objective of this article is to present an offline action-strategy of a planar robot with kinematic redundancy to measure the closeness to singularity and avoid singularity. It includes two main parts: First, before the robot moves along the desired paths, the closeness to singularity was measured based on the performance of the kinematics and dynamics so that one can know where to pause the robot. Second, an algorithm is designed to previously find the proper kinematic redundancy parameters for changing singularity and workspace. Hence, the robot can smoothly move far from the singularity to finish all paths. The results indicate that the robot can adjust its configuration to well realize the goal by the offline action-strategy.
Funder
Research Funds for the Central Universities
National Natural Science Foundation of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献