Affiliation:
1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, China
Abstract
Multi-bolt joint distributed around the connecting members are generally adopted to meet the high-performance assembly requirements in aerospace, energy and power industries. However, the initial preload could be low due to non-optimized preload sequence and bolt stress relaxation, especially at elevated temperature. Thus, it is necessary to take elastic interaction and bolt stress relaxation into account before jointing. In this article, a general multi-bolt elastic interaction with bolt stress relaxation is modelled analytically. First, the multi-bolt joint is characterized by ‘spring-node’ model and elastic interaction stiffness. Second, the bolt residual preload can be estimated according to linear superposition of elastic interaction and bolt stress relaxation under the condition of node displacement equilibrium. Further, the influence of preloading sequence and bolt stress relaxation on residual preload distribution was numerically analyzed using a typical circular ring with 8-bolt joint. Two bolts’ preloading sequences were planned, star sequence and counterclockwise sequence, respectively. The bolt creep simulation time was set as 10 h using the power-model at intermediate temperature. From comparison, the predicted results using the developed model were consistent with the FE simulations both with and without bolt stress relaxation.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献