Optimal design of an asymmetrical parallel mechanism

Author:

Wu Mengli1ORCID,Zhang Yue1,Yue Xianqu1,Lv Dongyang1,Chen Mo1,Wang Xuhao1,Zhang Jun1

Affiliation:

1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, China

Abstract

Aiming at the aircraft composite skin grinding, a Three-DOF Asymmetrical Mechanism (TAM) is proposed to replace manual grinding. Considering asymmetrical characteristics of the TAM, the linear superposition principle is adopted to derive the total stiffness matrix of the mechanism. The driving force curves of numerical calculation and simulation are almost coincident; thus the correctness of the dynamic model is verified. The global kinematics condition number index is established with the velocity ellipsoid method. Similarly, the global stiffness performance evaluation index is constructed according to the stiffness ellipsoid method. Moreover, a new global acceleration dexterity index is proposed to overcome the limitations of the dynamics ellipsoid method. Based on the above models and performance indices, a new optimization method is proposed which combines both single and multi-objective optimization. Among the method, the multi-objective optimization is carried out with normalized weighted sum algorithm and genetic algorithm. This optimization method can not only improve the convergence speed, but also balance the weight of different performance indices. After optimization, the kinematics, stiffness and dynamics performance are significantly improved by contrast with the initial performance atlas. Therefore, the results indicate the effectiveness of the multi-objective optimization method.

Funder

Fundamental Research Funds for the Central Universities

Joint Funds of the National Natural Science Foundation of China & Civil Aviation Administration of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3