A nature inspired optimal control of pneumatic-driven parallel robot platform

Author:

Pršić Dragan1,Nedić Novak1,Stojanović Vladimir1

Affiliation:

1. Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, Kraljevo, Serbia

Abstract

Woodworking industry is increasingly characterized by processing complex spatial forms with high accuracy and high speeds. The use of parallel robot platforms with six degrees of freedom gains more significance. Due to stricter requirements regarding energy consumption, easy maintenance and environmental safety, parallel platforms with pneumatic drives become more and more interesting. However, the high precision tracking control of such systems represents a serious challenge for designers. The reason is found in complex dynamics of the mechanical system and strong nonlinearity of the pneumatic system. This paper presents an optimal control design for a pneumatically driven parallel robot platform. The Proportional-Integral-Derivative (PID) algorithm with feedback linearization is used for control. The parameter search method is based on a firefly algorithm due to the empirical evidence of its superiority in solving various nonconvex problems. The simulation results show that the proposed optimal tuned cascade control is effective and efficient. These results clearly demonstrate that the proposed control techniques exhibit significant performance improvement over classical and widely used control techniques.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3