Thruster fault identification based on fractal feature and multiresolution wavelet decomposition for autonomous underwater vehicle

Author:

Liu Weixin1,Wang Yujia1,Yin Baoji1,Liu Xing1,Zhang Mingjun1

Affiliation:

1. School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China

Abstract

There exist some problems when the fractal feature method is applied to identify thruster faults for autonomous underwater vehicles (AUVs). Sometimes it could not identify the thruster fault, or the identification error is large, even the identification results are not consistent for the repeated experiments. The paper analyzes the reasons resulting in these above problems according to the experiments on AUV prototype with thruster faults. On the basis of these analyses, in order to overcome the above deficiency, an improved fractal feature integrated with wavelet decomposition identification method is proposed for AUV with thruster fault. Different from the fractal feature method where the signal extraction and fault identification are completed in the time domain, the paper makes use of the time-domain and frequent-domain information to identify thruster faults. In the paper, the thruster fault could be mapped multisource and described redundantly by the fault feature matrix constructed based on the time-domain and frequent-domain information. In the process of identification, different from the fractal feature method where the fault is identified based on fault identification model, the fault sample bank is built at first in the paper, and then pattern recognition is achieved by calculating the relative coefficients between the constructed fault feature matrix and the elements in the fault sample bank. Finally, the online pool experiments are performed on an AUV prototype, and the effectiveness of the proposed method is demonstrated in comparison with the fractal feature method.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3