Data-Driven Fault Detection of AUV Rudder System: A Mixture Model Approach

Author:

Zhang Zhiteng1,Zhang Xiaofang2,Yan Tianhong3,Gao Shuang1,Yu Ze1

Affiliation:

1. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266000, China

2. Naval Submarine Academy, Qingdao 266000, China

3. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Based on data-driven and mixed models, this study proposes a fault detection method for autonomous underwater vehicle (AUV) rudder systems. The proposed method can effectively detect faults in the absence of angle feedback from the rudder. Considering the parameter uncertainty of the AUV motion model resulting from the dynamics analysis method, we present a parameter identification method based on the recurrent neural network (RNN). Prior to identification, singular value decomposition (SVD) was chosen to denoise the original sensor data as the data pretreatment step. The proposed method provides more accurate predictions than recursive least squares (RLSs) and a single RNN. In order to reduce the influence of sensor parameter errors and prediction model errors, the adaptive threshold is mentioned as a method for analyzing prediction errors. In the meantime, the results of the threshold analysis were combined with the qualitative force analysis to determine the rudder system’s fault diagnosis and location. Experiments conducted at sea demonstrate the feasibility and effectiveness of the proposed method.

Funder

Xiaofang Zhang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3