Mechanical properties of aluminum/SiNT nanocomposite

Author:

Motamedi Mohsen1ORCID,Mehrvar Ali1ORCID,Nikzad Mohamadhossein1

Affiliation:

1. Department of Mechanical Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran

Abstract

Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3