Competition of systematically optimized deep neural networks for the estimation of tensile behavior of aluminum-magnesium alloy

Author:

Mokhtari Mir AbolfazlORCID,Nikzad Mohammad Hossein,Jalalvand Meysam

Abstract

Abstract Aluminum-magnesium (Al-Mg) alloys are prevalently employed within the aerospace sector. This research engaged a suite of deep learning approaches, encompassing the Artificial Neural Network (ANN), Gated Recurrent Unit (GRU) networks, Long-Short Term Memory (LSTM), and simple Recurrent Neural Network (RNN) to evaluate their predictive efficacy regarding the tensile strength and stiffness of Al-Mg alloys obtained from molecular dynamics simulation. The Taguchi method was initially applied to refine the architecture of each deep neural network (DNN), followed by a comparative analysis of their optimized configurations. The findings of this investigation revealed that the refined simple RNN and LSTM models exhibited superior predictive accuracy for estimating the strength and stiffness of the alloy, respectively. Moreover, the study elucidated that DNNs equipped with memory capabilities outstripped traditional ANNs in forecasting the tensile properties of Al-Mg alloys.

Publisher

IOP Publishing

Reference36 articles.

1. 5083 type Al-Mg and 6082 type Al-Mg-Si alloys for ship building;Ertuğ;Am. J. Eng. Res,2015

2. Corrosion in the development and airworthiness certification of Select Al and Mg aerograde alloys;Prabhu,2022

3. Fatigue properties of AL/AL-MG alloy laminated materials for the applications to railway tank cars;Yang;Int. J. Fatigue,2019

4. Effects of tensile test parameters on the mechanical properties of a bimodal Al–Mg alloy;Magee;Acta Mater.,2012

5. The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al–Mg alloy;Lathabai;Acta Mater.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3