Coupled FE–CFD thermal analysis for a cooled turbine disk

Author:

Javiya Umesh1,Chew John2,Hills Nick2,Scanlon Timothy1

Affiliation:

1. Rolls-Royce plc, Derby, UK

2. Thermo-Fluid Systems UTC, Faculty of Engineering and Physical Science, University of Surrey, Guildford, Surrey, UK

Abstract

This paper presents transient aero-thermal analysis for a gas turbine disk and the surrounding air flows through a transient slam acceleration/deceleration “square cycle” engine test, and compares predictions with engine measurements. The transient solid–fluid interaction calculations were performed with an innovative coupled finite element (FE) and computational fluid dynamics (CFD) approach. The computer model includes an aero-engine high pressure turbine (HPT) disk, adjacent structure, and the surrounding internal air system cavities. The model was validated through comparison with the engine temperature measurements and is also compared with industry standard standalone FE modelling. Numerical calculations using a 2D FE model with axisymmetric and 3D CFD solutions are presented and compared. Strong coupling between CFD solutions for different air system cavities and the FE solid model led to some numerical difficulties. These were addressed through improvement of the coupling algorithm. Overall performance of the coupled approach is very encouraging giving temperature predictions as good as a traditional model that had been calibrated against engine measurements.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of fluid-solid-thermal coupling characteristics of axial-symmetric vectoring exhaust nozzle;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-16

2. A Multifidelity Aero-Thermal Design Approach for Secondary Air Systems;Journal of Engineering for Gas Turbines and Power;2021-02-09

3. Life reliability assessment of twin-web disk using the active learning kriging model;Structural and Multidisciplinary Optimization;2019-11-20

4. Multidisciplinary design optimization of twin-web turbine disk with pin fins in inner cavity;Applied Thermal Engineering;2019-10

5. Theoretical and Experimental Studies for the Transient Response of Cavity;Journal of Thermal Science;2019-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3