Mechanism of chemical and mechanical mutual promotion in photocatalysis-assisted chemical mechanical polishing for single-crystal SiC

Author:

He Yan1ORCID,Yuan Zewei2ORCID,Tang Meiling2,Sun Jingting2,Liu Changfu1,Gao Xingjun1

Affiliation:

1. School of Mechanical Engineering, Liaoning Petrochemical University, Fushun, China

2. School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China

Abstract

Single-crystal SiC has become the third-generation semiconductor material with the most development potential due to its many outstanding physical and chemical properties, but excellent surface quality is the prerequisite for its application. Therefore, atomic mechanism of chemical and mechanical mutual promotion in hydroxyl radical ·OH aqueous was researched through reactive molecular dynamics simulation for obtaining nano-smoothed surface with photocatalysis-assisted chemical mechanical polishing (PCMP). The behavior of nanoparticles promoting chemical reaction during the nanofinishing process was studied vias a single abrasive sliding on the surface of SiC. A combination method of mechanical action and chemical action was adopted to compare effect of material oxidation and material removal. Si/C atoms are mainly fractured or escaped in the forms of SiO, CO, chain, SiO2, and CO2, and more residual oxidation products were observed on the substrate. Furthermore, XPS and nanoindentation results also support the mechanism of chemical and mechanical mutual promotion in PCMP through the detection of the oxidized products and surface hardness. This process activated and removed the SiC materials and generated a smooth and non-damaged surface (Ra 0.269 nm and Rmax 0.807 nm). The research results may reveal the removal mechanism of Si/C atoms, and provide new theoretical and technical support for the ultra-precision machining of single crystal sapphire, silicon nitride and diamond etc.

Funder

National Natural Science Foundation of China

Research Foundation of Liaoning Petrochemical University

Science and technology research project of Liaoning Provincial Department of Education

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3