Advances in simulation of gerotor pumps: An integrated approach

Author:

Altare Giorgio1,Rundo Massimo1

Affiliation:

1. Dipartimento Energia, Politecnico di Torino, Turin, Italy

Abstract

The paper describes a multi-domain simulation of a gerotor oil pump. Three different analysis tools have been used in synergy to predict the pump flow rate, in both conditions of complete and incomplete filling, and the pressure ripple. The computational fluid dynamics software PumpLinx® has been used for the determination of the discharge coefficients, while a finite element model analysis performed with ANSYS® has allowed the evaluation of the deflection of the pump cover under the action of the delivery pressure. The data calculated with the 3D tools have been utilized as input for a lumped parameter model of the pump developed in LMS Amesim® with customized libraries. The aim of the study is to supply the guidelines for tuning the models using a reduced number of computational fluid dynamics simulations. The results collected in the experimental campaign have demonstrated that a lumped parameter approach can be suitable, if properly calibrated, to predict the pressure oscillations in conditions of defective filling. Moreover, it was found that the cover deflection has a significant importance not only on the leakages, but also on the pressure ripple.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3