Study on milling flatness control method for TC4 titanium alloy thin-walled parts under ice fixation

Author:

Zhan Qiyun1,Jin Gang1,Li Wenshuo1,Li Zhanjie1

Affiliation:

1. Tianjin University of Technology and Education, Tianjin, China

Abstract

Thin-walled parts are characterized by weak rigidity and are very prone to deformation during machining, which directly affects the machining accuracy and performance of the parts, so controlling the machining deformation of thin-walled parts is an urgent process problem to be solved. To address such problems, this paper proposes a flatness control machining method based on ice holding of workpieces. The method uses frozen suction cups to solidify liquid water to achieve stress-free clamping of workpieces. We conducted a low-temperature tensile test to investigate the low-temperature mechanical properties of the material. Comparative tests of ice-free and low-temperature ice-fixed milling were conducted to compare and analyze the changes of flatness and milling force in the two working conditions, to investigate the influence of machining parameters on the flatness of thin-walled parts, and to reveal the mechanism of low-temperature milling of ice-fixed workpieces. In addition, the low-temperature milling performance of titanium/aluminum alloy based on ice-fixation was compared. The results show that TC4 has good plasticity, high flexural strength ratio and strong resistance to deformation at low temperatures. Compared with no ice-holding, ice-holding machining effectively improves the flatness of the workpiece, and the order of the machining parameters affecting flatness is: feed rate > milling depth > spindle speed. The milling forces under ice-holding conditions were all greater than those without ice holding. The stiffness and hardness, resistance to damage and deformation of titanium alloy at low temperature are greater than those of aluminum alloy. This method provides a new method for high-precision machining of thin-walled parts.

Funder

National Natural Science Foundation of China

Scientific Research Program of Tianjin Municipal Education Commission

Tianjin Natural Science Foundation Key Projects

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Residual Stress and Ultrasonic Deformation Control of Titanium Alloy Cylinder Components;Journal of Nondestructive Evaluation;2023-09-22

2. Study on milling flatness control method for TC4 titanium alloy thin-walled parts under ice fixation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3