Decisive impact of Filler-free joining processes on the Microstructural evolution, tensile and impact properties of 9Cr-1Mo-V-Nb to 316 L(N) dissimilar joints

Author:

Venkatakrishna A1,Lakshminarayanan AK1ORCID,Vasantharaja P2,Vasudevan M2

Affiliation:

1. Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

2. Advanced Welding and Modeling Section, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India

Abstract

Filler-free (FF) welding processes namely, Activated Tungsten Inert Gas welding (ATIG), Laser Beam Welding (LBW), and Friction Stir Welding (FSW) were utilized for joining the nuclear grade 9Cr-1Mo-V-Nb ferritic-martensitic steel and 316 L(N) austenitic stainless steel. A comparative investigation was made by assessing the weld geometries, metallurgical features, material mixing proportions, carbon diffusion behaviour, and mechanical properties of the post-weld heat-treated (PWHT) dissimilar weld joints. Geometries of the weld zones were observed with the transverse and longitudinal macrographs. Metallurgical features were examined by optical microscopy (OM) and Scanning electron microscopy (SEM). Three-phase microstructures were identified in the dissimilar weld zones (DWZ). The elemental distributions were identified by Energy-dispersive X-ray spectroscopy (EDAX). The mixing proportions of the dissimilar alloys and the formation of δ-ferrite in the dissimilar heat-affected zones (HAZ) and DWZ were analytically quantified. Moreover, the diffusion activity of carbides/interstitial carbon atoms was examined by Secondary ion mass spectroscopy (SIMS). In the FSW joints, the intermingled microstructures are recorded with high and stabilized hardness values as compared to the DWZ of the ATIG and LBW joints. In the transverse tensile test, all FF joints were failed at the 316 L(N) base metal (BM) region. Tensile and impact testing of all weld metal indicated that, the weld metal region of the LBW joint exhibited higher strength and lower toughness as compared to the ATIG and FSW joints. The presence of untransformed, recrystallized fine equiaxed austenite along and refined martensitic structure arranged in an alternate layers within the weld metal region of FSW joint caused the higher toughness property than the ATIG and LBW joints.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3