Review on the Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding Processes

Author:

Khedr MahmoudORCID,Hamada AtefORCID,Järvenpää AnttiORCID,Elkatatny SallyORCID,Abd-Elaziem Walaa

Abstract

Solid-state welding (SSW) is a relatively new technique, and ongoing research is being performed to fulfill new design demands, deal with contemporary material advancements, and overcome welding defects associated with traditional welding techniques. This work provides an in-depth examination of the advancements in the solid-state welding of steels through diffusion bonding (DB) and friction stir welding (FSW). Considerable attention was given to DB of steel, which overcame the difficulties of segregation, cracking, and distortion stresses that are usually formed in liquid-phase welding techniques. The defects that affected DB included two types: two-dimensional defects of a metallic lattice, i.e., phases and grain boundaries, and three-dimensional defects, i.e., precipitation. FSW, on the other hand, was distinguishable by the use of relatively low heat input when compared to fusion welding processes such as tungsten inert gas (TIG), resulting in the formation of a limited heat-affected zone. Moreover, fine grain structures were formed in the FSW interface because of the stirring tool’s severe plastic deformation, which positively affected the strength, ductility, and toughness of the FSW joints. For instance, higher strength and ductility were reported in joints produced by FSW than in those produced by TIG. Nevertheless, the HAZ width of the specimens welded by FSW was approximately half the value of the HAZ width of the specimens welded by TIG. Some defects associated with FSW related to the diffusion of elements, such as C/Cr atoms, through the weld zone, which affected the local chemical composition due to the formation of rich/depleted regions of the diffused atoms. Moreover, the lack-of-fill defect may exist when inappropriate welding conditions are implemented. On the other hand, the stirring tool was subjected to extensive wear because of the high hardness values, which negatively affected the economical usage of the FSW process. A summary of the results is presented, along with recommendations for future studies aimed at addressing existing difficulties and advancing the solid-state technology for steel.

Funder

Business Finland, project FOSSA- Fossil-Free Steel Applications

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3