Design of a fault detection and diagnose system for intelligent unmanned aerial vehicle navigation system

Author:

Zhang Qian1ORCID,Wang Xueyun1,Xiao Xiao1,Pei Chaoying1

Affiliation:

1. School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing, China

Abstract

A secure control system is of great importance for unmanned aerial vehicles, especially in the condition of fault data injection. As the source of the feedback control system, the Inertial navigation system/Global position system (INS/GPS) is the premise of flight control system security. However, unmanned aerial vehicles have the requirement of lightweight and low cost for airborne equipment, which makes redundant device object unrealistic. Therefore, the method of fault detection and diagnosis is desperately needed. In this paper, a fault detection and diagnosis method based on fuzzy system and neural network is proposed. Fuzzy system does not depend on the mathematical model of the process, which overcomes the difficulties in obtaining the accurate model of unmanned aerial vehicles. Neural network has a strong self-learning ability, which could be used to optimize the membership function of fuzzy system. This paper is structured as follows: first, a Kalman filter observer is introduced to calculate the residual sequences caused by different sensor faults. Then, the sequences are transmitted to the fault detection and diagnosis system and fault type can be obtained. The proposed fault detection and diagnosis algorithm was implemented and evaluated with real datasets, and the results demonstrate that the proposed method can detect the sensor faults successfully with high levels of accuracy and efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3