Six degrees of freedom positioning compensation method of robotic arm-assisted medical bone drilling

Author:

Yu Tian12ORCID,Wei Feng1ORCID,Miao’an Ouyang2,Shuhao Yang1,Weidong Zhao2,shuxiao Zhang1

Affiliation:

1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China

2. Shenzhen Jingjiang Yunchuang Technology Co., Ltd, Foxconn Industrial Internet, Shenzhen, Guangdong, China

Abstract

The positioning accuracy of medical bone drilling has a great impact on the success rate of orthopedic surgery. Due to the need for high accuracy of medical bone drilling, with use of any 6-DoF-type robotic arm to assist in drilling, a novel six-degree-of-freedom compensation positioning algorithm of robotic arm-assisted medical bone drilling is proposed, in which only position but also orientation errors of robotic end are considered, increasing positioning capability of drilling instrument end effector with position and orientation correction for medical drilling motion accurate controlling. For the different position and orientation characteristics of the robot arm controlling and measurement point/zone, position and orientation transformation from measurement to controlling point/zone is established through position and angle calibration experiments, realizing position and orientation error measured by optical tracking system from measurement point/zone to controlling point/zone. Based on 6-DoF parameter and principle of robotic arm, a positioning compensation model based on the 6-DoF position and orientation errors of robotic arm end is proposed, and iteration cycle is used for higher accuracy, realizing double correction of position and orientation of robotic arm end. The accuracy verification experiments measured by the optical tracking system shows that the average position error before and after the 6-DoF compensation positioning algorithm reduces from 1.42 mm (before compensation with DH-based inverse kinematic model) to 0.20 mm (after compensation model) and the average angle error from 0.470° to 0.046°. A bovine spine drilling experiment is carried out based on the 6-DoF compensation algorithm, and the average position error of the hole in the specific direction measured by the contour projector is 0.221 mm, achieving high positioning accuracy of bone drilling, demonstrating reliability and practical application value of medical bone drilling with the compensation of positioning algorithm.

Funder

National Natural Science Foundation of China (NSFC) and Shenzhen

National Key Research and Development Project of China

keyarea research and development Program of Guangdong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3