Design and simulation of a 3D-printed wall-climbing robot for high-risk construction tasks

Author:

Huynh Tu A1,Vo Kiet T1,Nguyen Hoa-Cuc1,Nguyen Ngoc-Duong1,Pham Hung V1,Nguyen Thanh Q2ORCID

Affiliation:

1. Faculty of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Vietnam

2. Department of Railway-Metro Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam

Abstract

This study aims to design and calculate a model for a wall-climbing robot to replace humans in performing dangerous tasks at great heights in construction sites. The research simultaneously addresses three main issues in the process of calculation, design, and simulation of the vertically climbing robot model. Firstly, the study conducts calculations and analyzes the dynamics of the model in various working states. Specifically, it calculates the suction force of the fan in non-contact conditions to ensure the suction capability of the model during practical operations. Secondly, the core content of this method involves utilizing the airflow generated by the engine through a specially designed suction mechanism to increase the airflow velocity significantly, thus creating a low-pressure area capable of adhering to the wall. This suction force calculation method and other forces acting on the robot model are based on numerical simulation software. The boundary conditions in the calculation process for the wall-climbing robot model are derived from the tasks that the robot performs during real operations, replacing humans. Thirdly, the study designs the wall-climbing robot using the non-contact suction force method through a 3D-printed fan model to enhance the model’s durability and optimize the airflow under various conditions. In summary, through this research, the paper aims to construct a robot model using non-contact suction and complete it entirely with 3D printing technology. This model will generate cost-effective and highly efficient robot vehicles that can be widely applied in modern industrial environments.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3