Experimental study of vortex suction unit-based wall-climbing robot on walls with various surface conditions

Author:

Zhao Jianghong1,Li Xin1ORCID,Bai Jin2

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Zhejiang, PR China

2. Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA

Abstract

This study presents a wall-climbing robot called Vortexbot. Vortexbot has a suction unit that uses vortex flow to generate a suction force. Unlike the traditional unit based on contact-type suction, the suction unit can maintain a suction force without any contact with the wall surface. Therefore, the suction unit can provide a climbing robot with sufficient stable suction force even on walls with very rough surfaces and raised obstacles/grooves, and there is no wear and tear. Furthermore, the compressed air vents from the gap between the suction unit and the wall surface after rotating in the vortex chamber. Hence, such kind of flow direction can avoid the effect of the dust and dropped items on the wall surface. In this paper, we first introduced the vortex suction unit principle and discuss the feasibility of its application to a wall-climbing robot. Subsequently, the mechanical structure of Vortexbot was designed. After which, we surveyed the suction properties of the suction unit on a smooth wall surface. Then the functional relationship between the percentage change in the suction force and the supply flow rate was obtained. In addition, we studied the effect of the roughness and shape (a raised obstacle and groove) of the wall surface on the suction performance of the suction unit. Finally, we experimentally verified the climbing performance of Vortexbot on several kinds of walls with different surface conditions. It was confirmed that using the suction unit improves the robot’s climbing performance.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3